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Correlation inference using transformed variables

In SparCC, we utilize the variation matrix to capture the variability of component compositions. Aitchison
showed that the same variability information can be equivalently represented by the covariance matrices
of log-ratio transformed variables [1], thus one may expect these covariance matrices to also serve as
departure points for basis correlations calculation. In the rest of this section we describe how information
regarding the basis correlations can be extracted from the covariance matrices of fractions transformed
using Aitchison’s additive log ratio (alr) and central log ratio (clr) transformations.

The alr covariance matrix allows detection of situations when all components are independent through
Aitchison’s test of complete subcompositional independence. In the alr transformation, a D-dimensional
set of fraction (x1, x2, ..., xD) is transformed to a (D−1)-dimensional set of variables (y1, y2, ..., yD−1) by
setting:

yi = log
xi

xD
i = {1, 2, . . . , D − 1}. (1)

Aitchinson showed that when all components are independent the alr covariance matrix takes the special
form:
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and constructed a test of complete subcompositional independence, in which the null hypothesis is the
the alr covariance matrix takes the above form, and the alternative is that the alr covariance matrix takes
a general positive semi-definite form [2], [3]. Although this test is statistically sound, and results in exact
p-values, rejection of the null hypothesis only indicates the existence of at least one pair of correlated
components, but it does not indicate which components are correlated, or what is the magnitude of the
correlation.

When there are many, sparsely correlated component, basis correlations are approximately equal to
the correlations between clr transformed variables. The clr transformation is defined as:

zi = log
xi

g(x)
= log

wi

g(w)
i = {1, 2, . . . , D}, (2)

where g(x) is the geometric mean of the component values in a sample, i.e.

g(x) = D

√√√√ D∏
i

xi. (3)
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The relation between covariance of clr transformed variables and the basis covariance is given by

Cov(zi, zj) = Cov
[
log

wi

g(w)
, log

wj

g(w)

]
= Cov [logwi − log g(w), logwj − log g(w)]

= Cov [logwi, logwj ]− 1
D
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Cov [logwi, logwn]
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Cov [logwn, logwm] (4)

≡ ωiωjρij − ωi〈ωnρin〉n − ωj〈ωmρjm〉m + 〈ωnωmρnm〉nm.

Consider again the simpler case where all basis variables have the same variance ω. Eq. 4 simplifies to

Cov(zi, zj) = ω2

[
ρij +

D − 1
D

(
〈ρ〉 − 〈ρi〉 − 〈ρj〉

)
− 1
D

]
, (5)

where the averaging is over correlation between different components (the term 1/D captures the self
correlations). It is now clear that when the network is sparse, and has many components, the correction
terms to the basis correlation ρij will be small. It is worth noting that though the basis correlation itself
may often be small, and the correction not negligible, no large spurious correlations will be induced. For
example, if all components are independent, the correlation between clr transformed variables will be

Corr(zi, zj) =
−ω2/D

ω2(D − 1)/D
= − 1

D − 1
. (6)

Eq. (6) demonstrates that CLR based correlations are negatively biased, and the size of the bias is
inversely proportional to the number of components. Thus, correlations inferred from a small number of
components will be severely skewed (Fig. S4). Another advantage of using the variation matrix over the
clr covariance matrix is that it enables the exclusion of strongly correlated component pairs, employed
in the iterative SparCC procedure, thus improving the approximation quality (see Fig. S3A for clr based
inference quality.). The advantage of the clr based inference is it’s simplicity and scalability (unlike
SparCC, it does not require inverting a potentially large matrix.), which make it particularly useful for
analyzing large, diverse datasets, for which it’s accuracy is similar to that of SparCC.
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